开通人脸识别服务,获取 AccessId 和 AccessSecret
在网上找一张照片,比如这张 ,记下图片url
新建文件夹 demo,进入文件夹,使用 wget 下载照片到文件夹内,并重命名为容易记忆的名字,比如 a.jpg,并从 下载 haarcascade_frontalface_default.xml
新建脚本 demo.py (这里使用的是 Python 3.6),添加
import requestsimport hmacimport hashlibimport datetimeimport json import base64from urllib.parse import urlparseimport cv2
然后是各种参数
image_url = ""imagePath = "a.jpg"url = "https://dtplus-cn-shanghai.data.aliyuncs.com/face/attribute"ak_id = ""ak_secret = " "
定义几个函数
def to_md5_base64(str): hash = hashlib.md5() hash.update(str.encode("utf-8")) return base64.b64encode(hash.digest()).decode("utf-8").strip()def to_sha1_base64(stringToSign, secret): hmacsha1 = hmac.new(secret.encode("utf-8"), stringToSign.encode("utf-8"), hashlib.sha1) return base64.b64encode(hmacsha1.digest()).decode("utf-8")def get_current_date(): date = datetime.datetime.strftime(datetime.datetime.utcnow(), "%a, %d %b %Y %H:%M:%S GMT") return date
发起请求所用的正文和headers
body = {"image_url":image_url,"type":0}options = { "url": url, "method": "POST", "body": json.dumps(body, separators=(",",":")), "headers": { "Accept":"application/json", "Content-Type":"application/json", "Date": get_current_date(), "Authorization":"" }}
准备阿里云API校验所需的数字签名
urlPath = urlparse(options['url'])if urlPath.query != '': urlPath = urlPath.path + "?" + urlPath.queryelse: urlPath = urlPath.pathbodymd5 = to_md5_base64(options['body'])stringToSign = options['method'] + '\n' \ + options['headers']['Accept'] + '\n' \ + bodymd5 + '\n' \ + options['headers']['Content-Type'] + '\n' \ + options['headers']['Date'] + '\n' \ + urlPathsignature = to_sha1_base64(stringToSign, ak_secret)authHeader = 'Dataplus '+ ak_id + ':' + signature options['headers']['authorization'] = authHeader
最后发起请求调用API
r = requests.post(url, data=options['body'], headers=options['headers'])result = json.loads(r.text)
返回结果格式说明可以看
处理结果,将每张人脸的矩形框、特征点、姿态和瞳孔坐标整合成json格式数据。
faces = []landmark_num = result['landmark_num']for i in range(result['face_num']): face = {} face['rect'] = result['face_rect'][i*4:(i+1)*4] face['prob'] = result['face_prob'][i] face['pose'] = result['pose'][i*3:(i+1)*3] face['landmark'] = result['landmark'][i*landmark_num*2:(i+1)*landmark_num*2] face['iris'] = result['iris'][i*6:(i+1)*6] faces.append(face)
最后用OpenCV展现照片,同时画出各种特征点以及瞳孔。
image = cv2.imread(imagePath)for face in faces: [x, y, w, h] = face['rect'] cv2.rectangle(image, (x,y), (x+w,y+h), (0,255,0), 2) lm = iter(face['landmark']) for x in lm: cv2.circle(image, (int(x),int(next(lm))), 2, (0,255,0), 2) iris = iter(face['iris']) for x in iris: cv2.circle(image, (int(x),int(next(iris))), int(next(iris)), (0,255,0), 1)cv2.imshow("faces",image)cv2.waitKey(1)